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Abstract: Amyloid PET imaging plays a crucial role in the diagnosis and research of Alzheimer’s
disease (AD), allowing non-invasive detection of amyloid-β plaques in the brain. However, the low
spatial resolution of PET scans limits the accurate quantification of amyloid deposition due to partial
volume effects (PVE). In this study, we propose a novel approach to addressing PVE using a latent
diffusion model for resolution recovery (LDM-RR) of PET imaging. We leverage a synthetic data
generation pipeline to create high-resolution PET digital phantoms for model training. The proposed
LDM-RR model incorporates a weighted combination of L1, L2, and MS-SSIM losses at both noise
and image scales to enhance MRI-guided reconstruction. We evaluated the model’s performance in
improving statistical power for detecting longitudinal changes and enhancing agreement between
amyloid PET measurements from different tracers. The results demonstrate that the LDM-RR
approach significantly improves PET quantification accuracy, reduces inter-tracer variability, and
enhances the detection of subtle changes in amyloid deposition over time. We show that deep
learning has the potential to improve PET quantification in AD, effectively contributing to the early
detection and monitoring of disease progression.

Keywords: partial volume correction (PVC); positron emission tomography; amyloid; deep learning;
diffusion models; medical image super-resolution

1. Introduction

Amyloid imaging is a crucial tool in the diagnosis and research of Alzheimer’s disease
(AD). It allows for the non-invasive detection of amyloid-β (Aβ) plaques in the brain, which
is a core neuropathological feature of AD [1]. Detecting Aβ pathology at the earliest stages
of AD, before the onset of clinical symptoms, is critical for understanding disease progres-
sion, developing intervention techniques, and potentially improving patient outcomes.
However, accurate quantification of amyloid using positron emission tomography (PET)
imaging is limited due to the low spatial resolution of PET scans [2], which is typically
around 5 mm and varies across scanner models and reconstruction algorithms. This causes
the partial volume effect (PVE) [3], resulting in a spill-out of signal from target gray matter
regions and spill-in from surrounding areas. The magnitude of the PVE depends on the size
of the target region relative to the spatial resolution of the scans. In the context of amyloid
PET imaging, the size of the target regions varies across subjects and often decreases as the
subject ages or with disease progression. Therefore, PVE reduces the accuracy, precision,
and statistical power of quantitative amyloid PET measurements. Another well-recognized
issue of amyloid PET imaging is harmonizing data acquired using different scanners, trac-
ers, and analytical pipelines. To minimize inter-scanner variabilities, a scanner-specific
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harmonization filter is often applied at the cost of further reduced spatial resolution [4]. To
minimize the variability of amyloid PET measurements from different analytical pipelines,
acquisition protocols, and tracers, the Centiloid scale was defined to linearly transform a
particular measurement to this scale [5]. However, this Centiloid approach is designed for
standardizing global measures and does not improve the between-measure agreements
in terms of their shared variance [6–8]. We hypothesize that effective methods for spatial
resolution recovery will improve PET quantification and reduce inter-tracer variabilities in
amyloid PET measurements, and in this research, we propose a deep learning approach to
achieve the goal.

Several partial volume correction (PVC) methods have been proposed in the literature
to mitigate the PVE issue using anatomical information from MRI and CT [2,9–15]. Different
from that, Tohka and Reilhac [16] showed that Richardson–Lucy, an iterative deconvolution-
based method to recover spatial resolution in PET imaging and an alternative to MR-based
approaches, offered comparable accuracy with reduced sensitivity to registration and
segmentation errors. However, deconvolution-based correction methods are shown to
amplify the image noise [17]. Different correction methods can also produce varying results,
making standardization and comparison across studies challenging. Deep learning-based
techniques [18,19] have recently been explored to tackle some of these challenges. Deep
models can better learn complex patterns of tissue heterogeneity and can perform image
denoising, potentially addressing noise amplification issues [19]. Deep models trained on
diverse datasets may generalize better to different scanners and acquisition protocols [18],
potentially improving the standardization and consensus among multi-center studies.

Instead of focusing on partial volume correction directly, as the PVC methods re-
viewed above do, an alternative is image super-resolution (SR), which refers to the task
of rendering a high-resolution image from its low-resolution counterpart. We contend
that PVE may be tackled during the process of rendering high-resolution PET from low-
resolution PET. SR is a well-studied research problem in computer vision and image
processing [20,21]. Use cases of SR span a broad spectrum, improving existing computer
vision tasks [22–24] by improving image spatial resolution and perceptual quality, im-
proving surveillance [25], and enhancing diagnostic accuracy in medical research using
different imaging modalities [26–28]. Traditional methods for image SR heavily rely on
image statistics [29–31], which has been shown to generate blurry and noisy artifacts in
their high-resolution outputs [20]. With the advent of deep learning algorithms, several
end-to-end architectures have been proposed where the models learn the mapping of
low-resolution to high-resolution images through regression-based learning [32]. However,
these methods fail to recover high-frequency details mainly because they learn an average
mapping from the training dataset (due to L1/L2 loss functions), resulting in overly smooth
model outputs and lacking spatial details [21].

To address these limitations, generative models have been explored for SR in recent
years. Generative models learn to transform a latent variable z with a tractable prior dis-
tribution to a learned data space. Generative adversarial networks (GANs), flow-based
methods, and diffusion models are three common generative models used to generate
synthetic data. They differ in their core approach: GANs [33] are trained in an adversar-
ial setting with generator and discriminator networks, flow-based methods [34] rely on
invertible transformations to manipulate data distributions, while diffusion models [35]
iteratively add and then learn to remove noise to generate data. GANs are known to
suffer from mode collapse [36], resulting in unstable training and limiting the diversity of
generated samples. Flow-based methods can impose topological constraints on the map-
ping between latent and data spaces, limiting their flexibility in modeling complex data
distributions [37]. Except for longer sampling times, diffusion models have shown superior
performance in generating high-fidelity medical imaging datasets [38–40]. Unlike GAN
priors, diffusion model priors can preserve more information to generate realistic data.
Motivated by this, we propose an SR solution based on the diffusion model to improve
PET quantification.
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The success of any SR methods (e.g., GAN, diffusion) heavily relies on the quantity
and quality of the training data. Synthetic data has been substantially useful in medical
AI research to alleviate issues such as a lack of datasets, annotations, privacy concerns,
and high acquisition costs [41–43]. Data samples are typically artificially generated using
domain knowledge or modeling techniques to mimic the characteristics and structure of
real data without being directly derived from actual observations. It can be used to train AI
models where target data are unavailable or scarce and provides a promising alternative to
making AI models generalized to real-world datasets [44–46]. These studies mainly focus
on improving detection and segmentation from high-resolution imaging. However, its
applicability in enhancing PET quantification remains unexplored.

In this study, (1) we develop a new latent diffusion model for resolution recovery
(LDM-RR) in PET imaging. Instead of training the diffusion model to minimize loss on the
noise scale, we introduce a composite loss function with three terms: L1, L2, and MS-SSIM
at the noise and image scale to improve MRI-guided reconstruction. (2) We developed
a synthetic data generation pipeline to generate PET digital phantoms mimicking high-
resolution PET scans for model training. (3) We evaluate the performance of our LDM-RR
model in improving the statistical power of detecting longitudinal changes. (4) We evaluate
the ability of the LDM-RR model to improve the agreement of amyloid PET measurements
acquired using different tracers.

2. Materials and Methods
2.1. Datasets and Simulation Procedure

Imaging data from three different cohorts were used in this study to enable our experi-
ments: (1) the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort
(adni.loni.usc.edu) [47], (2) the Open Access Series of Imaging Studies-3 (OASIS-3) [48], and
(3) the Centiloid Project florbetapir (FBP) calibration dataset [49] (http://www.gaain.org/
centiloid-project, accessed on 15 October 2023). A subset of the ADNI database containing
MRI scans was utilized for data simulation to train the diffusion model, while another
subset with FBP scans (Table 1) was employed to evaluate the model’s performance in de-
tecting longitudinal changes. Additionally, paired FBP-PiB imaging data from the OASIS-3
and Centiloid databases (Table 1) were used to further assess the model’s performance in
cross-tracer harmonization. Details regarding data selection and simulation are provided in
the subsequent sections. The ADNI was launched in 2003 as a public–private partnership
led by Principal Investigator Michael W. Weiner, MD. The original goal of ADNI was to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). The current goals include validating biomarkers for clinical trials, improving
the generalizability of ADNI data by increasing diversity in the participant cohort and
providing data concerning the diagnosis and progression of Alzheimer’s disease to the
scientific community.

Table 1. Summary of demographic information of the three cohorts included in this study. * 14 out of
46 were unknown.

Cohort ADNI OASIS-3 Centiloid

Sample count 334
(167 baseline-followup FBPs)

113
(FBP-PIB pairs)

46
(FBP-PIB pairs)

Age (SD)
years 75.1 (6.9) 68.1 (8.7) 58.4 (21.0)

Education (SD)
years 16.1 (2.7) 15.8 (2.6) NA

Male (%) 182 (54.5%) 48 (42.5%) 27 (58.7%)

http://www.gaain.org/centiloid-project
http://www.gaain.org/centiloid-project
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Table 1. Cont.

Cohort ADNI OASIS-3 Centiloid

Cognitive
impairment (%) 236 (70.6%) 5 (4.4%) 24 (52.2%)

APOE4+ (%) 218 (65.3%) 38 (33.6%) 15 (46.9 *%)

PET interval (SD)
years 2.0 (0.06) NA NA

2.1.1. Data to Train the Diffusion Model

We utilized 3376 MRI scans randomly selected from the ADNI database to generate
simulated high-resolution digital phantoms (simDP) and simulated florbetapir (simFBP)
using an MR-based procedure as previously described [50] and mimics the distribution
of florbetapir (FBP) uptake in participants across a wide range of amyloid burden and
clinical status and the noise and spatial resolution characteristics of typical PET images.
The specific set of MRIs selected as the basis for simulation does not have a major impact
on subsequent experiments and, therefore, was not described in detail. The size of the
dataset captures the overall distribution and variability of structural brain differences in the
elderly population without losing generalizability. A detailed description of the simulation
procedure is discussed in Section 2.2 below. From this simulated dataset, 3038 samples were
used to train, and 338 samples were used to validate our LDM-RR model’s performance.

2.1.2. Data for Evaluating Longitudinal Power

To evaluate LDM-RR’s ability to improve statistical power to detect longitudinal
changes in amyloid, we selected 167 ADNI participants with a mean age of 74.1 years
(SD = 6.8), who are amyloid positive at baseline using a Centiloid cutoff of 20 [51] and have
two-year follow-up (2.0 ± 0.06 years interval) FBP scans. The choice of these participants
is to ensure they are on a trajectory to accumulate amyloid during the study period,
i.e., having a positive expected rate of amyloid accumulation. Additional demographic
information of this cohort is summarized in Table 1.

2.1.3. Data for Evaluating Harmonization Performance

From the OASIS-3 database [48], we identified 113 pairs of FBP-PiB scans with a
mean age of 68.1 years (SD = 8.7), and similarly, 46 pairs from the Centiloid project [49]
(http://www.gaain.org/centiloid-project, accessed on 15 October 2023) with a mean age of
58.4 years (SD = 21.0). Refer to Table 1 for demographic information of these two cohorts.
Studies for the cohorts included here were approved by their corresponding institutional
review boards and written informed consent was obtained for each participant.

2.2. Image Analysis and Simulation

FreeSurfer v7.3 [52] (Martinos Center for Biomedical Imaging, Charlestown, MA, USA)
(https://surfer.nmr.mgh.harvard.edu/fswiki, accessed on 15 October 2023) was used to
automatically segment T1-weighted MRIs to define the anatomical regions of interests
(as defined in the wmparc.mgz file). PET images were processed using a FreeSurfer-
dependent pipeline that included resolution harmonization filtering, inter-frame motion
correction, target frame summation, PET-to-MR registration, and regional and voxel-wise
SUVR calculation [50,53]. A mean cortical SUVR (MCSUVR) was calculated as the sum-
mary measure of amyloid burden and used to evaluate longitudinal and harmonization
performance [53]. For comparison purposes, a Richardson–Lucy algorithm was adopted
for resolution recovery (RL-RR) through iterative deconvolution [54,55]. In our experiment,
the MATLAB (The Mathworks, Inc., v2021a, Natick, MA, USA) function: deconvlucy
(https://www.mathworks.com/help/images/ref/deconvlucy.html, accessed on 15 Octo-
ber 2023) was called with 20 iterations and an 8 mm full-width-half-max (FWHM) Gaussian

http://www.gaain.org/centiloid-project
https://surfer.nmr.mgh.harvard.edu/fswiki
https://www.mathworks.com/help/images/ref/deconvlucy.html
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kernel to generate the deconvolved high-resolution PET images and the corresponding
MCSUVR estimation.

Similar to previously described by Su et al. [50], the simulation of high-resolution
digital phantom (DP) and PET images (simFBP) was performed using segmented MRI as
the input. For DP generation, each voxel was assigned a specific intensity value according
to tissue type-specific distributions observed from actual FBP SUVR images across the
aging and AD spectrum. For non-brain voxels, i.e., those not defined in the wmparc.mgz
file, the voxel intensity was assigned by randomly scaling the normalized T1-MRI images
to simulate moderate non-brain uptake. To generate simFBP images, the DP was smoothed
and projected to the sinogram space, adding Poisson noise, and reconstructed back to
the image space. We generated the simulation with a range of noise levels as seen in
real-world PET scans with a noise equivalent count rate (NECR) of 75 ± 26 kcps [56,57].
The target resolution of the simFBP data is 8 mm in FWHM, approximating the resolution
of standardized PET data from ADNI [4]. Figure 1 shows a visual example of a simulated
digital phantom (B) and PET image (C) matching a T1-MRI image (A).
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Figure 1. Visualization of a simulated digital phantom (simDP) and simulated FBP (simFBP) from the
data simulation pipeline using T1-MRI and the LDM-RR generated synthetic super-resolution FBP.

2.3. LDM-RR: PET Resolution Recovery Framework

We use a latent diffusion model to generate synthetic high-resolution FBP scans given
standard low-resolution FBP and matching MRI scans. Figures 2 and 3 give an overview
of the training process. Diffusion models have shown impressive results in generating 2D
images [58]. However, they are computationally demanding at the training and inference
stages. Medical imaging modalities, such as MRI and PET, are more complex as they
capture spatial information in 3D. Latent diffusion models operate at a lower-dimensional
latent space by compressing useful information from these high-dimensional imaging data.
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conditioned on latent representations of T1-MRI and simFBP and uses a combination of image and
noise scale losses to generate corresponding high-resolution simDP.

Our proposed LDM-RR is built upon a state-of-the-art LDM originally proposed
to generate 3D brain MRIs [40]. Specifically, it has a 2-stage training process and three
different components: an encoder, a diffusion U-Net [59], and a decoder model. The
encoder compresses high-dimensional data into a low-dimensional latent representation,
diffusion U-Net converts simFBP to simDP in the latent space through a denoising process,
and the decoder upsamples the low-dimensional simDP to its original image space. Trained
models and implementation code will be made available for reproducibility and further
research (https://github.com/jaygshah/LDM-RR, accessed on 5 October 2024).

2.3.1. Compression Models

The goal of the compression model is to create a compressed representation of high-
dimensional brain images that serve as the foundation for the subsequent diffusion model.
We use an autoencoder [40] that compresses the 3D brain images into a lower-dimensional
latent representation capturing perceptual representation of original images while preserv-
ing essential features to reduce complexity. In the first stage, we train three modality-specific
3D autoencoder models separately for simFBP, simDP, and MRI (see Figure 2), each with
a combination of L1 loss, perceptual loss, a patch-based adversarial objective, and a KL
regularization of the latent space [40]. The input to the encoder is a 3D image with di-
mensions 256 × 256 × 256, and we extract smaller sub-volumes of size 64 × 64 × 64 to
fit in GPU memory. The encoder maps these sub-volumes to a latent representation of
size 16 × 16 × 16. Once trained, latent representations from these encoders are used as
inputs to the diffusion U-Net. See Appendix B for more details on the autoencoder model
architectures and hyperparameters used.

2.3.2. Diffusion Model

Diffusion U-Net in LDMs perform denoising by iteratively predicting and removing
noise in latent space. Typically, they are trained to minimize the L2 loss between predicted
and actual noise [40,59]. However, for super-resolution, we found that minimizing L2 loss
does not consistently guarantee the recovery of brain structure information in generated
outputs, which we have further analyzed in the discussion section. Prior studies have
shown that using a mix of image restoration loss can produce high-fidelity images compared
to single loss functions [60]. L2 regularization is sensitive to outliers and can introduce
visual artifacts since it penalizes high errors. L1, on the other hand, is robust to outliers
but suffers from non-differentiability in zero and slow training [61]. Moreover, Zhao
et al. [60] showed for image restoration and SR, L1, and L2 penalties fail to capture structure

https://github.com/jaygshah/LDM-RR
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information and proposed a multi-scale structural similarity index (MS-SSIM) metric. Voxel-
level intensity has a high impact on PET quantification [62]. Here, we hypothesize and
show through results that existing L2 loss-based diffusion models do not provide a clinically
accurate reconstruction of PET scans. A weighted combination of L1, L2, and MS-SSIM
losses, on the image and noise scales can accurately generate a high-resolution using MRI
and simFBP.

To train diffusion models, a small amount of Gaussian noise is progressively added
to the data in T steps through a forward noise addition process, forming a Markov chain
(Equations (1) and (2)) [35]:

q(z1:T |z0) =
T

∏
t=1

q(zt|zt−1) (1)

q(zt|zt−1) = N
(

zt;
√

1 − βtzt−1, βt I
)

(2)

Here, βt is the fixed variance schedule and zt follows a pure Gaussian noise distribution
after many forward diffusion steps T (T = 1000 in our experiments). The diffusion U-Net
learns the reverse diffusion process, i.e., denoising zT to z0 (Equations (3) and (4)) which
can be formulated as [35]:

pθ(z0:T) = p(zt)
T

∏
t=1

pθ(zt−1|zt) (3)

pθ(zt−1|zt) = N
(

zt−1; µθ(zt, t), σ2
t I
)

(4)

zt =
√

αtz0 +
√

1 − αtϵ (5)

where µθ represents the denoising neural network (diffusion Unet) and σ2
t = 1−αt−1

1−αt
βt.

Traditionally, the diffusion models are trained to predict the added noise in forward diffu-
sion process by minimizing L2 loss between predicted (ϵ̂) and added noise (ϵ) formulated
as [59]:

Lθ = Ex,ϵ∼N(0,1),t

[
||ϵ − ϵθ(zt, t)||22

]
(6)

Furthermore, we can estimate the noise-free latent vector using the predicted noise (ϵ)
from the diffusion model using Equation (5) from Ho et al. [35] as:

ẑ0 =
zt −

√
1 − αt ϵ̂√
αt

(7)

Zhao et al. [60] observed that image reconstruction performance can be improved by
adding perceptual image metrics such as MS-SSIM in a network’s loss function. It allows
capturing structural details at multiple scales while maintaining voxel-level accuracy. While
this holds true for current encoder-decoder architectures, to the best of our knowledge,
it has not yet been investigated for denoising diffusion networks in latent space. Since
our goal is to fuse structure information from T1-MRI to guide the reconstruction, we
modify LDM’s vanilla loss function (Lθ) on noise scale to a weighted combination of L2
and MS-SSIM loss on image scale as:

loss1 = (1 − α)L2(z0, ẑ0) + αMSSSIM(z0, ẑ0) (8)

Here α = 0.8 [60] in Equation (8) is an empirically set hyper-parameter. We explored
α = [0.2,0.5,0.8]. However, α = 0.8 resulted in the model with the best performance in
reconstructing simDP on the simulated dataset’s validation set. While L2 allows easier
optimization in diffusion training due to its convergence properties, it is known to produce
an averaging effect, which forces the model to predict values closer to the mean of training
data [60]. We argue that using only L2 loss can help preserve whole image-level properties
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but may also produce inaccurate estimates at the voxel level. To this end, we propose L1
loss at the noise scale to ensure voxel-level details are preserved in the denoising process.

loss2 = L1(ϵ, ϵ̂)=|ϵ − ϵ̂| (9)

A combined loss function using the two loss terms from Equations (8) and (9),

losscombined = L1(ϵ, ϵ̂) + (1 − α)L2(z0, ẑ0) + αMSSSIM(z0, ẑ0) (10)

was used to train the LDM-RR model. The combined loss is indeed equivalent to (see
Appendix A):

losscombined = L1(ϵ, ϵ̂) + γ(1 − α)L2(ϵ, ϵ̂) + αMSSSIM(z0, ẑ0)) (11)

By minimizing loss on image (z) and noise (ϵ) scales, the LDM-RR model learns to
reduce the disparity between the reconstructed high-resolution PET image and the target
digital phantom while preserving image-level and voxel-level structure details, and later
(voxel-level details) may play an important role for correcting the partial volume effects.

Figure 3 illustrates the second stage of training where only the diffusion U-Net is
trained whereas encoder and decoder model parameters are kept frozen. Input to the U-Net
is a concatenation of noisy latent representation of simDP

(
zT(DP)

)
and conditioning of

matching MRI (zMR) and simFBP (zSP) latent representations. The model’s predicted noise
(ϵ̂) can be used to estimate ẑ0(DP) and calculate the combined loss (Equation (11)), which
is used to update diffusion U-Net parameters in each training epoch. See Appendix B for
more details on model architectures, training, and computational resources.

2.4. Statistical Analysis
2.4.1. Simulated Data Analysis

To evaluate our LDM-RR’s actual performance at generating a high-resolution FBP
scan, we compare the mean recovery coefficient (RC)—measured as the ratio of synthetic
high-resolution PET MCSUVR to that of ground-truth from simulated DP, and variability
measured by the standard error (SE). A value closer to 1 indicates higher reconstruction
performance. We compare our method to Richardson–Lucy-based resolution recovery
(RL-RR), traditional LDM with L2 noise loss, LDM with L2 noise and L1 image loss, and
simulated FBP scans without any correction.

2.4.2. Longitudinal Analysis

To evaluate the longitudinal performance of the LDM-RR, for each of the 167 par-
ticipants, the annualized rate of amyloid accumulation was calculated by dividing the
MCSUVR change from baseline to the follow-up visit by the follow-up interval, commonly
used in longitudinal PET studies [63]. The imaging data was acquired using standard
protocols, and harmonization procedures were performed to reduce variability. The mean
and standard deviation of the annualized rate of change were evaluated for each analysis
method, i.e., raw measurement, with RL-RR, and with the LDM-RR. A one-sample t-test
(one tail) was used to determine whether the annualized rate was significantly greater than
zero. A smaller p-value is interpreted as having greater power to detect the longitudinal
accumulation of amyloid burden. To further compare the statistical power of different
techniques in a longitudinal setting, we estimated the number of participants per arm
needed to detect a 25% reduction in amyloid accumulation rate due to treatment with 80%
power and a two-tailed type-I error of p = 0.05 in hypothetical anti-amyloid treatment trials
similar to previous studies [64,65]. A smaller estimated sample size (SS) indicates greater
statistical power.
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2.4.3. Cross-Tracer Analysis

In the cross-tracer analysis, we evaluated the impact of RL-RR vs. LDM-RR on the
agreement of PET-derived global amyloid burden, i.e., MCSUVR, using paired FBP-PIB
data from OASIS-3 and the Centiloid project. The imaging data was also collected following
standard protocols and underwent harmonization processes to minimize variability, similar
to the ADNI study. In our experiment, the raw PIB MCSUVR was used as the reference
amyloid burden measurement, and we evaluated whether the corrected FBP MCSUVR is
more strongly correlated with PIB MCSUVR using Steiger’s test. We also test whether the
LDM-RR corrected FBP MCSUVR is more strongly associated with PIB MCSUVR than the
RL method.

3. Results
3.1. Qualitative Assessments

Figure 4 showcases corrected FBP scans using RL (Figure 4C) and LDM-RR (Figure 4D)
methods in comparison to the real FBP scan without any correction (Figure 4A). The pro-
posed LDM-RR model-generated synthetic FBP image has an improved spatial resolution,
with a similar level of anatomical details matching T1-MRI (Figure 4B). A similar exam-
ple of LDM-RR applied to simulated data is shown in Figure 1D. Although RL-RR does
not require an MRI, it generated noisier images and was not able to fully recover the
high-resolution details (Figure 4C). The LDM-RR method leverages the high-resolution
structural information from MRI to guide the super-resolution process, resulting in PET
images with reduced partial volume effects.
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T1- MRI for a sample from OASIS-3 cohort.

3.2. Evaluation on Simulated Data

A visual example of model-generated synthetic FBP from the test set of simulated
data is shown in Figure 1D. The mean RC from different diffusion models compared to the
RL-RR method and without any correction is shown in Figure 5. Our proposed LDM-RR
model was able to better reconstruct target simDP (0.96, SE = 0.004, p < 0.001) compared
to RL-based correction (0.82, SE = 0.005, p < 0.001) and without any corrections (0.76,
SE = 0.008, p < 0.001). It also performs significantly better compared to a typical LDM
architecture [40] for super-resolution (1.32, SE = 0.08, p < 0.001) and other combinations
of noise and image scale loss (1.58, SE = 0.09, p < 0.001). The improvement in recovery
coefficient with LDM-RR was also statistically significant (p < 0.001) compared to other
LDM methods.
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Figure 5. Comparison of mean recovery coefficient (RC) using different methods on a held-out test
of 338 samples randomly selected from the simulated dataset. A value closer to 1 indicates high
performance.

3.3. Evaluation on Real Longitudinal Amyloid PET Data

Table 2 shows a comparison of statistical power to detect amyloid accumulation in
longitudinal studies using the LDM and RL methods for resolution recovery in comparison
to measurements from raw FBPs without any correction. The annualized rate of amyloid
accumulation was significantly greater than zero for all three methods (p < 0.0001), sug-
gesting an increase in brain amyloid burden over time as expected. Notice the annualized
rate of amyloid accumulation is the unit of SUVR/year, which is specific to the underly-
ing quantification methods and not directly comparable. Numerically, the p-value was
smallest using the LDM-RR and largest without any correction, suggesting our proposed
method had the best power in detecting longitudinal changes. Additionally, the LDM-RR
required a much smaller sample size estimate to detect a 25% reduction in the amyloid
accumulation rate due to treatment in hypothetical anti-amyloid trials. To put the sample
size estimation into context, the recently completed TRAILBLAZER-ALZ2 randomized
trial of donanemab [66] recruited 860 participants for the treatment arm and 876 for the
placebo arm. The donanemab was able to reduce the patient’s brain amyloid burden by
over 80%. Therefore, our assumed treatment effect is considerably more moderate.

Table 2. Statistical power in detecting longitudinal changes measured by mean, standard deviation,
and p-value of an annualized rate of amyloid accumulation and sample size (SS) per arm estimates
detecting a 25% reduction in amyloid accumulation rate due to treatment (80% power and a two-tailed
type-I error of p = 0.05).

Annualized Rate Raw RL-RR LDM-RR

Mean 0.0278 0.0377 0.0459

SD 0.0664 0.0807 0.0881

p-value 1.0 × 10−7 5.0 × 10−9 1.3 × 10−10

SS 1431 1154 926
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3.4. Evaluation on Real Cross-Tracer Amyloid PET Data

The performance of LDM-RR and RL-RR methods at harmonizing cross-tracer global
amyloid burden measurements is shown in Table 3. Agreement of MCSUVR measurements
between tracers significantly improved (p < 0.001), as shown by a higher correlation for
both LDM and RL-based corrections to the reference measure. The improvements in LDM-
RR-based partial volume corrections compared to RL were also statistically significant
(p = 0.042). The results provide evidence supporting that the inter-tracer variability in
PET-derived amyloid burden measurement is at least in part related to the partial volume
effect associated with lower spatial resolution and the contaminated signal from the target
regions of interest. While the numerical improvement in terms of the Pearson correlation is
small, they were statistically significant, suggesting improving image resolution can be one
of the strategies for reducing the variability.

Table 3. Comparison of RL and LDM-RR methods in improving the MCSUVR agreement between
FBP and PIB tracers shown by Pearson correlation and Steiger’s test.

Method Pearson
Correlation

Steiger’s
p-Value

Without correction 0.9163 N/A

RL-RR 0.9308 <0.0001
(RL-RR vs. without correction)

LDM-RR 0.9411

0.0001
(LDM-RR vs. without correction)

0.0421
(LDM-RR vs. RL-RR)

4. Discussion

It is well recognized that PET imaging has inherently low spatial resolution which
leads to PVE, resulting in loss of sensitivity to focal changes and compromised accuracy
due to signal contamination [14,67]. Many different techniques have been developed to
account for PVE and improve quantitative accuracy [14,16,68,69]. In the context of PET
neuroimaging, commonly adopted techniques are often region-based and do not provide
high-resolution images [50,70,71]. Voxel-wise approaches do exist [15,16,72]; however,
they are known to amplify noise while having limited ability to recover the full spatial
resolution or have gone through limited evaluation for targeted applications [73–75]. This
study presents a new approach to improving PET quantification leveraging latent diffusion
models trained using controlled simulated data. We show that diffusion models have a
strong potential to enhance PET quantification through super-resolution. Our LDM-RR
model’s performance on longitudinal amyloid and cross-tracer PET data demonstrates that
diffusion-based super-resolution (SR) approaches can outperform traditional approaches
in tackling the issue of PVE in PET imaging.

We propose an alternative to L2 loss, which has been a de facto standard in training
diffusion models. L2 penalty pushes the model to reduce large errors, potentially sacrificing
high-frequency details (Figure 6B). Moreover, L2 loss is sensitive to the scale of voxel inten-
sities. In super-resolution tasks, where the goal is to reconstruct fine details (voxel-level),
L2 loss may not be ideal for capturing subtle differences in high-frequency information,
whereas L1 loss may help capture the voxel-level details, which are considered to be crucial
to addressing PVE. In addition, it is interesting to observe the added contribution from
the multi-scale structural similarity index (MS-SSIM) metric, which confirmed the research
findings of Zhao et al. [60]. Visual comparison in Figure 6 shows that using a combined
loss at image and noise scales (Figure 6D), the generated high-resolution FBP images
have a more accurate representation of brain structure from MRI and voxel-level uptake
measurements.
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Simulation data was generated to approximate the PET imaging formation process and
the distribution of tracer uptake as observed in real amyloid PET images. The simulated
data were used to train the LDM-RR model and evaluate its performance against the
ground truth which is otherwise not possible. It should be recognized that simulated
data cannot fully replicate the overall distribution and characteristics of real amyloid PET
data which may introduce bias to the trained model. More sophisticated simulations can
potentially be adopted to minimize this potential bias and improve model performance.
Nevertheless, evaluation of model performance in real-world setting is important which
we discuss further below.

We selected two commonly encountered scenarios in the investigation of Alzheimer’s
disease to evaluate the real-world utility and benefits of diffusion-based SR techniques
for PET. In the longitudinal analysis, we leveraged data from the ADNI cohort in partici-
pants with a baseline visit and a 2-year follow-up to examine the sensitivity and statistical
power of different correction methods. The participants were intentionally selected to have
moderate to medium-high levels of pathological amyloid burden at baseline to maximize
the probability of these participants to accumulate amyloid plaques during the follow-up
period, and therefore we expect a positive increase in the MCSUVR measure and deviation
from that reflects measurement noise. It is worth noting that both resolution recovery
methods (RL-RR and LDM-RR) led to greater numerical values of the rate of amyloid accu-
mulation which reflects the improved recovery coefficient as expected. In the meantime,
the standard deviation of the estimated rate also increased numerically which can be a
combined effect of the improved recovery coefficient and possible amplification of noise.
The net effect of the correction methods is reflected by the p-values of the one-sample
t-test applied to the rate data where a smaller p-value indicated a greater statistical power
demonstrating a beneficial effect of correcting for PVE. The sample size estimation in
hypothetical anti-amyloid treatment trials further confirmed the notion that correcting
for PVE improves the longitudinal power. This improvement can lead to reduced experi-
mental costs in longitudinal observational studies and clinical trials which will facilitate
treatment development. In a clinical setting this improved power can lead to better patient
management by providing more sensitive and accurate monitoring of disease progression
once treatment becomes routinely available to patients. While we chose to demonstrate
the capability of our proposed technique to improve the quantitative analysis of clinical
amyloid PET imaging data, the same principle and method can also be applied to the anal-
ysis of preclinical animal PET data. Previous studies have developed advanced algorithms
for the analysis of preclinical PET data, e.g., [76]. Super-resolution methods in general
and our proposed LDM-RR technique specifically can recover the high-frequency signals
lost during the image formation process by leveraging other sources of information such
as MR or prior knowledge such as a template and improve the quantitative accuracy of
PET-derived measurements in both preclinical and clinical applications.

The second real-world application we tested in this study is the ability of PVE cor-
rection to improve agreement between PET-derived measurements from different tracers.
Using amyloid PET imaging as an example, currently, there are at least five different PET
tracers that are widely used in research studies, clinical trials, and patient management to
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measure amyloid burden. It is well recognized that the different tracers behave differently,
leading to discrepancies in PET-derived amyloid burden measurements. At least part of
this discrepancy is related to the contamination of the target measurement from nuance
signals spill-in to our measurements. We demonstrated that both correction methods im-
proved the agreement, and the LDM-RR outperformed the RL method statistically. In the
meantime, we recognize the improvement has not reached the level where two tracers can
be used interchangeably and may not outperform some of the other techniques we have
developed [6,7]. On the other hand, this experiment demonstrated that PVE correction can
be one of the strategies we can employ to improve harmonization, and a combination of
multiple techniques may be the ultimate solution to fully solve the harmonization problem.
We also acknowledge that there are other approaches leveraging deep learning techniques
to address issues related to the standardization and harmonization of image-derived mea-
surements, e.g., [77]. Further investigation in this direction is warranted.

This work has a few limitations: One potential limitation of our diffusion model-based
framework is the computational complexity to train and validate the model on 3D imaging
data. Even with a faster sampling method [78], the inference time is considerably high
compared to other generative models (see Appendix B). Due to the sequential nature of the
denoising process, this is a known limitation of diffusion models and remains an active
area of research. Second, the model was trained on synthetic data rather than real data,
which may limit the technique’s performance. This is primarily due to the fact that the
approach we adopted requires paired data with ground truth high-resolution images for
training and validation, which is lacking. Examination of methods that are self-supervised
or semi-supervised may allow us to overcome this limitation. We also like to point out
that our intended application is narrowly focused on AD-related applications, while the
underlying principles can be applied more broadly, although it will be beyond the scope of
this paper.

5. Conclusions

We introduced a latent-diffusion-model-based resolution recovery (LDM-RR) method
to enhance PET image resolution and mitigate the impact of PVE. Results demonstrate
that the LDM-RR method improves spatial resolution while preserving critical amyloid
and anatomical information, outperforming traditional methods like Richardson–Lucy
(RL) correction. LDM-RR model showed superior performance at reconstructing high-
resolution PET images, improved statistical power for detecting longitudinal amyloid
accumulation and a strong potential to improve the agreement between measurements
obtained from different PET tracers, contributing to better data harmonization across
multi-center studies. These findings suggest that diffusion-based super-resolution (SR)
techniques offer a promising alternative to conventional PVC methods by overcoming
noise amplification issues and achieving better image fidelity.
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www.adni.loni.usc.edu
www.oasis-brains.org
www.gaain.org/centiloid-project
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www.gaain.org/centiloid-project
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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PVC Partial volume correction
PVE Partial volume effect
RC Recovery coefficient
RL Richardson–Lucy
RL-RR Richardson–Lucy for resolution recovery
simDP Simulated digital phantom
simFBP Simulated florbetapir
SR Super-resolution
SS Sample size

Appendix A

Substituting z and ẑ0 from Equations (5) and (7), loss1 can be simplified as:

loss1 = (1 − α)
∣∣∣∣∣∣ zt−

√
1−αtϵ√
αt

− zt−
√

1−αt ϵ̂√
αt

∣∣∣∣∣∣2
2
+ αMSSSIM(z0, ẑ0)

= (1 − α)
(

zt−
√

1−αt√
αt

)
||ϵ − ϵ̂||

2

2
+ αMSSSIM(z0, ẑ0)

= γ(1 − α) ||ϵ − ϵ̂||22 + αMSSSIM(z0, ẑ0)

and substituting loss1 where γ = zt−
√

1−αt√
αt

in the combined loss equation, we obtain:

losscombined = L1(ϵ, ϵ̂) + γ(1 − α)L2(ϵ, ϵ̂) + αMSSSIM(z0, ẑ0)

Appendix B

Compression Models: Our compression models had a 3-layer 3D AutoencoderKL
architecture inspired from Pinaya et al. [40]. We removed all attention layers except at the
model’s last level. The models had 32 base channels, with a channel multiplier of [1,2,2] and
only one residual block per level. Our latent space had a dimensionality of 16 × 16 × 16
with 3 latent channels. We trained our model over 80 epochs with a minibatch of 60, an
Adam optimizer, and a base learning rate of 0.0001. We used a patch-based discriminator
in our adversarial loss with 32 base channels and a learning rate of 0.0001.

Diffusion Model: Our diffusion model uses the U-net architecture from [1], with
32 base channels, a channel multiplier of [1,2,2], and 1 residual block per level. The input
channels are 9 (3 channels each for simFBP, simDP and MRI latents). We used Adam
optimizer with a base learning rate of 0.0001. In training, we used a DDPM scheduler with
1000 timesteps, with a linear variance schedule, from 0.0015 to 0.0195. At inference, we use
a DDIM scheduler [78] with 250 timesteps, which is a faster sampling method compared to
DDPM while maintaining output quality.

Computational resources: All models were trained on a single NVIDIA A100 80 GB
GPU. The inference time to generate a synthetic SR FBP was ~10 min on the GPU.
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